Belief functions in computational linguistics: a reconsideration of belief modes
DOI:
https://doi.org/10.35494/topsem.2016.2.36.451Keywords:
theory of evidence, artificial agent, speech recognition, conversational agentsAbstract
Proposed as a core element for a probabilistic model, belief
functions are aimed at representing the beliefs an artificial agent
or subject produces as it observes the world. Although such a
construct has been successfully applied in a number of scientific
fields, most of its applications in the design of artificial
agents have exploited the modality of believing using only a
few of all of its possible modes of expression. This has recently
changed with a number of current computational linguistics
applications which employ all modes of believing for this
cognitive modality. The expansion in the use of the modes of
believing for the design of artificial agents has resulted in an
improvement of the performance by these computational linguistics
applications. These results confirm the current validity
of Greimas’ warning as to not to ignore this cognitive modality.
Downloads
References
BARNETT, J. A. (1981). “Computational methods for a mathematical theory of evidence”. IJCAI’81 Proceedings of the Seventh International Joint Conference on Artificial Intelligence. Vol. 2. San Francisco, California: Morgan Kaufmann, pp. 868-875.
BLOCH, I. (2008). “Defining belief functions using mathematical morphology–application to image fusion under imprecision”. International Journal of Approximate Reasoning. Num. 48, pp. 437-465.
BONET, B, & GEFFNER, H. (2013). “Causal belief decomposition for planning with sensing: Completeness results and practical approximation”. In F. Rossi (Ed.). Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence (pp. 2275-2281). Menlo Park, California: AAAI Press / International Joint Conferences on Artificial Intelligence.
___________ (2014). “Belief tracking for planning with sensing: Width, complexity and approximations”. Journal of Artificial Intelligence Research. Núm. 5, pp. 923-970.
BRIER, S. (2009). “Cybersemiotic pragmaticism and constructivism”. Constructivist Foundations. Núm. 5. Vol. 1, pp. 19-38.
___________ (2010). “Cybersemiotics: An evolutionary world view going beyond entropy and information into the question of meaning”. Entropy. Núm. 12. Vol. 8, pp. 1902-1920.
CADORE, J., VALVERDE-ALBACETE, F. J., GALLARDO-ANTOLÍN, A. & PELÁEZ MORENO, C. (2013). “Auditory-inspired morphological processing of speech spectrograms: Applications in automatic speech recognition and speech enhancement”. Cognitive computations. Núm. 5. Vol. 4, pp. 426-441. Recuperado el 10 de diciembre de 2015, de: http://e archivo.uc3m.es/handle/10016/15932#preview
CIMATTI, A., ROVERI, M., & BERTOLI, P. (2004). “Conformant planning via symbolic model checking and heuristic search”. Artificial Intelligence. Núm. 159, pp. 127-206.
COHEN, M. H., GIANGOLA, J. P., & BALOGH, J. (2004). Voice User Interface Design. Boston, Massachusetts: Addison-Wesley.
CONTRERAS, M. J. (2012). “Introducción a la semiótica del cuerpo: presencia, enunciación encarnada y memoria”. Cátedra de Artes. Núm. 12, pp. 13-29.
DAHL, D. (Ed.) (2004). Practical Spoken Dialog Systems. Dordrecht, Holanda: Kluwer Academic.
DEMPSTER, A. P. (1967). “Upper and lower probabilities induced by a multivalued mapping”. The Annals of Mathematical Statistics. Núm. 38. Vol. 2, pp. 325-339.
GREIMAS, A. J. (1989). Del sentido II. Ensayos Semióticos. Madrid: Gredos.
HENDERSON, M., THOMSON, B., & YOUNG, S. (2014). “Word-based dialog state tracking with recurrent neural networks”. Proceedings of the SIGDIAL 2014 Conference. Stroudsburg, Pensilvania: Association for Computational Linguistics, pp. 292-299.
JURAFSKY, D., & MARTIN, J. H. (2008). Speech and Language Processing: An Introduction to Language Natural Processing, Computational Linguistics, and Speech Recognition, 2a. ed. Upper-Saddle River, Nueva Jersey: Pearson-Prentice Hall.
KLEIN, J., LECOMTE, C., & MICHÉ, P. (2010). “Hierarchical and conditional combination of belief functions induced by visual tracking”. International Journal of Approximate Reasoning. Núm. 51, pp. 410-428.
KOCSIS, L., & SZEPESVÁRI, C. (2006). “Bandit based Monte-Carlo planning”. Proceedings of the Seventeenth European Conference on Machine Learning. Berlín: Springer-Verlag, pp. 282-293.
LIN, W., BUFFET, O., LEE, C. & TEYTAUD, O. (2012). “Optimistic heuristics for Minesweeper”. In R. Chang, L. C. Jain, & S Peng (eds.). Proceedings of International Computer Symposium. Taiwan: Springer, pp. 199-207.
MA, Y., RAUX, A., RAMACHANDRAN, D., & GUPTA, R. (2012). “Landmark-based location belief tracking in a spoken dialog system”. Proceedings of the 13th Annual Meeting of the Special Interest Group on Discourse and Dialogue. Stroudsburg, Pensilvania: Association for Computational Linguistics, pp. 169-178.
MCTEAR, F. M. (2004). Spoken Dialogue Technology: Toward the Conversational User Interface. Nueva York: Springer.
MISU, T., RAUX, A., GUPTA, R. & LANE, I. (2014). “Situated language understanding at 25 miles per hour”. Proceedings of the SIGDIAL 2014 Conference. Stroudsburg, Pensilvania: Association for Computational Linguistics, pp. 22-31.
OBERTI, L. (2003). “Semiótica de las pasiones y sujeto de conocimiento”. XI Jornadas de Reflexión Académica. Buenos Aires, Argentina: Universidad de Palermo, pp. 81-83.
OSBORNE, M. J., & RUBINSTEIN, A. (1994). A Course in Game Theory. Cambridge, Massachusetts: MIT.
PROVAN, Q. M. (1989). “A logic interpretation of Dempster Shafer theory, with application to visual recognition”. Proceedings of the Fifth Annual AAAl Workshop on Uncertainty and AI, pp. 287-294.
SHAFER, G. (1976). A Mathematical Theory of Evidence. Princeton, Nueva Jersey: Princeton University.
SILVA, H. (2014). “Significante, sentido, sujeto: diálogos entre psicoanálisis y semiótica”. Revista Sujeto, Subjetividad y Cultura. Núm. 7, pp. 41-49.
SZELISKI, R. (2010). Computer Vision: Algorithms and Applications. Londres: Springer-Verlag.
TUROCY, T. L., & VON STENGEL, B. (2003). “Game Theory”. In H. Bigdoli (eds.), Encyclopedia of Information Systems. Vol. 2. EE.UU: Elsevier Science, pp. 403-420.
WERBOS, P. J. (1991). “Links between artificial neural networks (ANN) and statistical pattern recognition”. In I. K. Sethi, & A. K. Jain (eds.), Artificial Neural Networks and Statistical Pattern Recognition: Old and New Connections. Amsterdam: Elsevier Science, pp. 11-32.
WILLIAMS, J. D. (2012). “A belief tracking challenge task for spoken dialog systems”. Proceeding SDCTD ‘12 NAACL-HLT Workshop on Future Directions and Needs in the Spoken Dialog Community: Tools and Data. Stroudsburg, Pensilvania: Association for Computational Linguistics, pp. 23-24.
YAGER, R. R. & LIU, L. (2008). Classic Works of the Dempster-Shafer Theory of Belief Functions. Berlín: Springer-Verlag.
ZADEH, L. A. (1984). Reseña del libro A Mathematical Theory of Evidence. AI Magazine. Núm. 5. Vol. 3, pp. 81-83.
ZELIS, O. P. (2015). “Yo (self) y otro; sujeto y Otro: Términos relativos para una lógica del conocimiento-de-sí-mismo y del crecimiento subjetivo”. Ponencia presentada en VI Jornadas Peirce en Argentina, pp. 1-12. Buenos Aires: Academia Nacional de Ciencias de Buenos Aires.
Published
How to Cite
Issue
Section
License
Tópicos del Seminario is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.