Entrevista con Luciano Boi ¿Qué es la topología? Matemáticas, ciencia, filosofía y arte

Autores/as

  • Arturo Romero Contreras Benemérita Universidad Autónoma de Puebla

DOI:

https://doi.org/10.35494/topsem.2020.1.43.666

Palabras clave:

-

Resumen

-

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Arturo Romero Contreras, Benemérita Universidad Autónoma de Puebla

Profesor e investigador

Citas

BOI, Luciano (1992). "The 'revolution' in the geometrical vision of space in the nineteenth century, and the
hermeneutical epistemology of mathematics”. En D. Gillies (ed.). Revolutions in Mathematics. Óxford:
Clarendon Press, pp. 183-208.

___________ (1994). “Mannigfaltigkeit und Gruppenbegriff. Zur den Veränderungen der Geometrie im 19.
Jahrhundert”. Mathematische Semesterberichte, vol. 41, núm. 1, pp. 1-16.

___________ (1995). Le problème mathématique de l'espace. Une quête de l'intelligible. Preface de René Thom.
Hiedelberg/Berlín : Springer/Verlag.

___________ (2005). Geometries of Nature, Living Systems and Human Cognition. Singapur: World Scientific.

___________ (2006). "The A leph of S pace. O n s ome e xtension of geometrical and topological concepts in the
twentieth-century mathematics: from surfaces and manifolds to knots and links”. En G. Sica (Ed.). What is
Geometry? Milán: Polimetrica Inter. Sci. Publ., pp. 79-152.

___________ (2006). "Mathematical Knot Theory". Encyclopaedia of Mathematical Physics, vol. 3. En J.-P. Françoise,
G. Naber, T. S. Sun (Eds.). Óxford: Elsevier, pp. 399-406.

___________ (2006). "From Riemannian Geometry to Einstein's General Relativity Theory and Beyond: Space-Time
Structures, Geometrization and Unification”. En J.-M. Alimi & A. Füzfa (Eds.). Proceedings Albert Einstein
Century International Conference. Melville: American Institute of Physics, pp. 1066-1075.

___________ (2009). “Ideas of geometrization, geometric invariants of low-dimensional manifolds, and topological
quantum field theories”. International Journal of Geometric Methods in Modern Physics, vol. 6, núm. 5, pp.
701-757.

___________ (2011). Morphologie de l'invisible. Limoges : Presses Universitaires de Limoges.

___________ (2011). The Quantum Vacuum. The Geometry of Microscopic World, from Electrodynamics to Gauge
Theories and String Program. Baltimore: The John Hopkins University Press.

___________ (2011). "When Topology Meets Biology for Life. The Interaction Between Topological Forms and
Biological Functions". En C. Bartocci, L. Boi & C. Sinigaglia (Eds.). New Trends of Geometry. Their Interactions
with the Natural and the Life Sciences. Londres: Imperial College Press, pp. 243-305.

___________ (2012). Pensare l'impossibile: dialogo infinito tra scienza e arte. Milán: Springer/Verlag, Milano.

___________ (2016). "Imagination and Visualization of Gometrical and Topological Forms in Space. On Some
Formal, Philosophical and Pictorial Aspects of Mathematics". En O. Pombo & G. Santos (Eds.). Philosophy of
Science in the 21st Century – Challenges and Tasks, Documenta núm. 9. Lisbon: Editions of CFUL, pp. 28-54.

___________ (2019). "Some mathematical, epistemological and historical reflection on space-time theory and the
geometrization of theoretical physics, from B. Riemann to H. Weyl and beyond". Foundations of Science, vol.
24, núm. 1, pp. 1-38.

__________ (2019). "H. Weyl Deep insights into the mathematical and physical worlds. His important contribution
to the philosophy of space, time and matter". En C. Lobo & B. Julien (Eds.). Weyl and the Problem of Space.
Basel: Springer, pp. 231-263.
*
ALEXANDROFF, P. (1961). Elementary Concepts of Topology. Nueva York: Dover Publications.

CONNES, A. (June 2010). "A View of Mathematics". París : Institut des Hautes Etudes Scientifiques.

___________ (7 novembre 2017). "Un topo sur les topos". Texte de la conférence donnée dans le cadre du
séminaire "Lectures grothendieckiennes". París : Ecole Normale Supérieure.

GROMOV, M. (2000). "Space and Questions". En N. Alon et al. (Eds.). Visions in Mathematics, GAFA, Geom. Funct.
Anal., Special Volume, Part I., pp. 118-161.

HILBERT, D. & COHN-VOSSEN, P. (1999). "Geometry and Imagination”. Americal Mathematical Society [First
German edition, Anschauliche Geometrie, Springer-Verlag, Berlín, 1932].

MANIN, Yu (1981). Mathematics and Physics. Boston: Birkhäuser.

POINCARÉ, H. (1902). La science et l'hypothèse. París : Flammarion.

___________ (1913). "Pourquoi l'espace a trois dimensions?". Dernières pensées. París : Flammarion.

PRASOLOV, V.V. (1995). Intuitive Topology. American Mathematical Society. Providence.

RIEMANN, B. (1990). "On the Hypotheses Which Lie at the Bases of Geometry". Collected Mathematical Works. S.
Chandresekhar (Introduction). Nueva York/Leipzig: Springer/Teubner [Habilitatioschrift,
Göttingen, 1854].

ROLSFEN, D. (1976). Knots and links. Berkely, CA.: Publish or Perish.

THOM, R. (1977). Stabilité structurelle et morphogenèse. París : Inter Editions.

___________ (1980). "Topologie et signification". Modèles mathématiques de la morphogenèse. París : C. Bourgois.

THURSTON, W. P. (1997). Three-Dimensional Geometry and Topology, vol. 1. Princeton: Princeton University
Press.

___________ (1998). "How to see 3-manifolds". Classical and Quantum Gravity, vol. 15, núm. 9, pp. 2545-2571.

WEEKS, J. R. (1985). The Shape of Space. Nueva York: Marcel Dekker.

WEYL, H. (1949). Philosophy of Mathematics and Natural Sciences. Princeton: University Press.

Publicado

06-05-2020

Cómo citar

Romero Contreras, A. (2020). Entrevista con Luciano Boi ¿Qué es la topología? Matemáticas, ciencia, filosofía y arte. Tópicos Del Seminario, 1(43), 213–265. https://doi.org/10.35494/topsem.2020.1.43.666

Otros artículos del autor/a en esta revista